Exemplar Problems

55. The integrating factor of the differential equation $\frac{dy}{dx} + y = \frac{1+y}{x}$ is

20.0

(a)
$$\frac{x}{e^x}$$
 (b) $\frac{e^x}{x}$ (c) xe^x (d) e^x
Sol. (b) We have, $\frac{dy}{dx} + y = \frac{1+y}{x}$
 $\Rightarrow \qquad \frac{dy}{dx} = \frac{1}{x} + \frac{y(1-x)}{x}$
 $\Rightarrow \qquad \frac{dy}{dx} - \left(\frac{1-x}{x}\right)y = \frac{1}{x}$
This is a linear differential equation.

1.2

On comparing it with $\frac{dy}{dx} + Py = Q$, we get

$$P = \frac{-(1-x)}{x}, Q = \frac{1}{x}$$
$$\text{LF.} = \int_{-1}^{1-x} dx = e^{-\int_{-1}^{1-x} dx}$$

Being able to recognize that it is a LDE, and its right form. That is the main task here.